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ABSTRACT

This paper reports on an in-depth study of electrocardiogram
(ECG) biometrics in everyday life. We collected ECG data
from 20 people over a week, using a non-medical chest tracker.
We evaluated user identification accuracy in several scenarios
and observed equal error rates of 9.15% to 21.91%, heavily
depending on 1) the number of days used for training, and 2)
the number of heartbeats used per identification decision. We
conclude that ECG biometrics can work in the wild but are less
robust than expected based on the literature, highlighting that
previous lab studies obtained highly optimistic results with
regard to real life deployments. We explain this with noise due
to changing body postures and states as well as interrupted
measures. We conclude with implications for future research
and the design of ECG biometrics systems for real world
deployments, including critical reflections on privacy.
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INTRODUCTION

Specific human characteristics can be used to automatically
identify a person and to subsequently grant access to a re-
stricted area or to unlock devices. Several such biometric
systems have already penetrated the market [23]. For example,
fingerprint scanners or face recognition allow us to unlock our
smartphones and notebooks. Moreover, biometrics can be used
as an additional authentication factor to improve security [35].

Biometrics are also useful for access control in special working
areas with a high demand for security, for example, labora-
tories, data centers, power plants, clean rooms, or hospitals.
Here, biometric sensors are commonly applied to doors or pan-
els near an entry point, for example, to recognise the user’s fin-
gerprint [14], finger or palm veins [69], iris [S], and face [16].
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Figure 1. We conducted a field study to explore a continuous physiologi-
cal signal, namely the electrocardiogram (ECG), as a biometric in every-
day life. ECG data was captured from 20 people over a week, using an
ECG tracker attached to a chest belt with embedded dry electrodes.

Behaviour [50] can also be used for identification, including
voice [8], typing on a keyboard [7], or handwriting [62].

Further biometrics recently emerge in research and early ap-
plications, including electrocardiograms (ECG). An ECG is
the electrical measurement of heart activity and reflects in par-
ticular the muscle contractions of the heart. This is assumed
to depend on many personal factors, for example, age, gender,
fitness, and genetics. While general heart functions are the
same for healthy humans, considerable variation occurs due
to such specific characteristics. This variation can be used to
automatically identify a person, as demonstrated in first works
by Biel et al. [4] and Kyoso & Uchiyama [38]. Since then,
ECG as a human identifier has been intensively researched in
the field of biometrics (e.g. see survey [47]).

However, ECG biometrics still lack in-depth evaluation in real
life situations. This is crucial to provide a realistic picture
of what to expect from such systems in industry and market
applications. Existing work ran either controlled lab studies
with medical grade ECG trackers or relied on data from med-
ical ECG databases from PhysioNet [22]. In medical setups,
multiple leads are used to measure the signal with adhesive
electrodes attached to the body. This achieves a signal with
little noise and almost no motion artifacts. In some cases
the data is also manually annotated. These aspects are to be
considered unrealistic and cumbersome for practical everyday
applications. Some studies thus used cheaper non-medical
grade tracking devices, for example, acquiring data from the
fingers [2, 10, 11, 13, 33, 41, 51]. However, only two studies
went beyond the lab with wearable devices [56, 64], with only



four and five participants. We thus see the need for research to
evaluate ECG biometrics in more detail “in the wild”.

To address this gap, we conducted a field study for seven
days, complemented by two lab sessions (N=20): Baseline
ECG was recorded in the lab. Then, ECG was recorded in
the field by equipping people with a chest belt ECG tracker
worn throughout the day. We applied digital signal processing
and machine learning classifiers to investigate how well user
identification via ECG biometrics works on data collected in
everyday life with realistic contexts.

We found that ECG biometrics can work in the field but per-
form less well than in controlled lab studies. We propose to
combine decisions on up to 15 heartbeats to increase identifi-
cation performance, achieving a best equal error rate (EER) of
9.15%. We further show that training the model on data from
a single day results in poor EER, indicating that realistic use
cases should obtain training data from multiple days.

Overall, we contribute: 1) An in-depth study of ECG bio-
metrics in everyday life, going beyond the lab. 2) Detailed
evaluations of user identification on this data. In addition, we
conclude with implications for future research and concrete
recommendations for real world ECG biometrics systems, in-
cluding critical reflections on privacy aspects. We see the
need to evaluate and discuss biometric approaches not only
in purely technical domains and terms but also in the HCI
community, to respect user-centered aspects and concerns.

RELATED WORK

Pioneering work in 2001 by Biel et al. [4], Irvine et al. [29],
and Kyoso and Uchiyama [38] first showed that ECG can be
used to automatically identify a human individual. Their work
was motivated by the fundamental question of whether ECG
can be used as a biometric [4], and more specifically whether
it can secure patient data in eHealth systems [38]. These early
studies had limited sample sizes with five to 20 participants.

The following decade saw increasing research interest in ECG
for biometrics. The survey by Odinaka et al. [47] provides
an overview and a comparison of classification approaches
for user identification. Most of these projects share similar
processing pipelines: First, data is collected from a study with
sensors or retrieved from an existing medical database. Prepro-
cessing then includes, for example, filtering and segmenting
the signal into single cardiac cycles. Subsequently, features
are extracted and used to evaluate a decision model, typically
a machine learning classifier. The next paragraphs discuss
related work for each of these steps in more detail to inform
our choices in this paper.

ECG Data Acquisition

Public databases of signals from medical-grade devices can
be found on PhysioNet!, for example the MIT-BIH databases,
which are widely used for research on ECG biometrics [13,
49, 54, 59, 60]. Alternatively, new data can be acquired from
participants in experimental setups. This has been done with
medical-grade devices [4], custom prototypes [10, 13, 33, 41,

IPhysioBank Databases:
database

https://physionet.org/physiobank/

42,40, 45], consumer devices [2, 11, 31, 47], or wearables [64].
In some cases, researchers highlighted the resulting “in-house
databases” with regard to the need for standardised datasets
and evaluations for ECG biometrics [1, 47, 51].

Sensing

Employed sensors differ in amount of leads, resolution, and
sample rate: Medical-grade devices can measure ECG with
twelve leads at multiple points on the body. This measures
the signal from different angles facilitating diagnosis of health
issues. For biometrics, one-lead measurements between the
left and the right arm (i.e. body halves) are sufficient [41].
Regarding sample rate, work by Seepers et al. [53] found
90 Hz to be sufficient for authentication based on RR intervals
to protect mHealth systems. They state that other work may
have been oversampling the ECG by at least a factor of four.

Signal Processing

Raw signals are filtered with bandpass filters [31, 32, 42, 51,
59, 60], cascaded filters [10, 11, 13, 38, 46], or finite impulse
response filters [41, 49]. Those are mainly used to eliminate
baseline drift and high frequency interference. For fiducial
point extraction (i.e. detecting onset, offset, and peaks of car-
diac cycles), a prior segmentation into cardiac cycles may be
appropriate. Other methods like wavelet analysis do not need
fiducial points at all [60, 64]. Segmentation typically utilises
established algorithms, such as Engelse Zeelenberg [20], Pan
Tompkins [48], Christov [12], or Hamilton [24].

Feature Extraction and Classification

Features can be extracted based on the segmented cardiac
cycles: The fiducial points can be used to determine tempo-
ral features, amplitude features, as well as angles [59]. Fea-
ture representations are then utilised for decision-making via
classification, including random forest classifiers (RFC) [59],
support vector machines (SVM) [11, 42, 40, 64], k-nearest
neighbors (kNN) [1, 42, 41], and neural networks (NN) [10,
49, 54, 60, 66]. Work by Choi et al. provides an overview,
evaluating nine different classifiers for ECG biometrics [11].

Example Setups and Systems

Noteable specific classification setups include the following:
Tan and Perkowski [59] proposed to combine two classifiers,
namely random forests and a wavelet distance measure with
probabilistic thresholds. This improved effectiveness and ro-
bustness of their user verification system. They used data from
184 subjects under different health conditions from PhysioNet
and data acquired from a biosensor integrated into a mobile
device. They reported user verification accuracy of 99.52%,
which is slightly superior than each of the classifiers alone.
Their conclusion points to a multimodal biometric system by
complementing their approach with fingerprint biometrics.

Such a multimodal system was proposed by Hsiao et al. [13],
who built a prototype to collect ECG and fingerprint data. They
evaluated their system on data from PhysioNet and found a
recognition rate of 92%.

Other work addressed further specific applications such as
emergency services: Ye et al. [64] acquired data from a smart
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textile that is capable to continuously monitor ECG. They col-
lected around 400 hours of ECG data at 200 Hz from five fire-
fighters in multiple sessions spread out across several months.
Overall, they report a near 100% recognition rate yet also state
limitations considering the small amount of participants.

Choi et al. [11] investigated biometric authentication with
a CardioChip handheld device. They designed a cascading
bandpass filter to address the higher noise of this mobile ECG
sensor. Despite the mobile sensor, they collected data from
175 participants in seated position at rest for 60 seconds, with
up to three repetitions. Comparing nine classifiers, they found
a SVM with radial basis function kernel to perform best with
an accuracy of 95.99% and an equal error rate of 4.46%.

Recent work also demonstrates efforts on hardware integra-
tion: Yin et al. [65] proposed a dedicated low-power ECG
micro processor for ECG biometric authentication. It embeds
filtering, R peak detection, outlier removal, normalisation, and
authentication via neural networks. This could enable effi-
cient biometric systems. However, it might make changes or
updates to the deployed decision algorithms challenging.

User Verification Performance and Attacks

Overall, ECG biometrics perform well, with researchers re-
porting high user recognition rates, for example an accuracy of
95.99% and EER of 4.46% [11], accuracy of 97.9% and false
rejection rate and false acceptance rate of almost 0% [66], or
a recognition rate of 94.3% and EER of 13.0% [41]. When
concentrating solely on HRYV, research has found a recognition
rate of up to 82.22% [1].

However, research has also shown that recognition can still be
improved, for example by using subsequent heart beats [11,
46]: Choi etal. [11] report a drop in EER from 4.46% to 1.87%
when using 15 seconds of heartbeats instead of a single beat.
Furthermore, other studies combined ECG biometrics with
additional modalities, for example fingerprint [13], face recog-
nition [31], or both [55]. Isreal et al. [31] found a multimodal
biometric systems to be superior to a unimodal one.

Eberz et al. [19] demonstrated successful attacks on biometric
systems that rely exclusively on ECG: They spoofed ECG
signals with an attack success rate of 62% when mapping
the ECG signal from any tracking device to the target device.
Huang et al. [26] relate this security issue with ECG signals to
the uniqueness and stability of the features. They note that if
ECG data was leaked or stolen, ECG authentication might no
longer protect a system from unauthorised access. This is true
for other biometrics as well, such as fingerprints [52].

Methodology

In terms of study design, a key difference between ECG bio-
metrics studies is the number of sessions of data recording:
Some studies collected data from one session only [31, 41,
42, 45, 49], where others used two [2, 10, 32, 40], or more
sessions [1, 4, 51]. These were all lab sessions; only two stud-
ies explored ECG biometrics in the wild [56, 64]. However,
these studies had severely limited samples with four and five
participants, respectively.

Regarding recording contexts and conditions, signals were
obtained in resting positions [4, 15, 38, 46], and under induced
strain, either physiological [57] or psychological [28].

Summary

In summary, ECG biometrics achieved high user recognition
rates in the lab. However, evaluations under less controlled
conditions are still missing. A few small-scale studies motivate
more detailed investigations in real life contexts, which should
include more varied contexts, body postures, and external inter-
ruptions and influences. Some researchers specifically called
for such explorations of ECG biometrics in the field [55].

This motivates our work: To fill the gap in the literature we
present an in-depth study of ECG biometrics in the wild. In-
formed by the reviewed related work, we employ established
signal processing procedures and compare key classification
approaches (RFC, SVM, NN) on data from multiple sessions,
namely seven full-day recordings per participant. The next
section presents background information on ECG signals.

BACKGROUND: ELECTROCARDIOGRAM (ECG)

The electrocardiogram reflects the electrical activity of the
heart’s muscle contractions. Figure 2 displays a typical cardiac
cycle with its single waves annotated with letters P to T, as
well as segments between some of the waves. Each wave in
the ECG stands for a specific electrical activity happening in
one regular heartbeat.
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Figure 2. A schematic visualisation of the heart, with annotations of the
sinus node (SA Node) and the atrioventricular node (AV Node). The SA
node is the pacemaker of the heart and the AV node is important for
the contractions of the ventricles. The electrocardiogram’s characteris-
tics are annotated. The P wave reflects the contraction of the atria, the
QRS complex the contraction of the ventricles. The T wave signalises the
normalisation of the ventricles. The RR interval is measured between
two subsequent R peaks. Its variation is known as heart rate variability
(HRYV). Picture inspired by [18, 32].

ECG Signal and Terminology

We explain the relationship between heart activity, the result-
ing electrical signal, and how this is measured; with the help
of work by Dubin [18]. Details can be seen in Figure 2:

General — The sinus node is the natural pacemaker of the heart
and triggers the cardiac cycle. In healthy humans it initiates
60 to 100 heartbeats per minute. It causes the negative charged
muscle cells, so called myocytes, to change polarisation. In
the resting state, the myocytes are charged negatively.

P wave — If the sinus node triggers a cardiac cycle, an impulse
starts spreading like a circular wave and stimulates the my-
ocytes of the atria to be positively charged (depolarisation).



As the wave spreads, the atria contracts. This causes the P
wave on the ECG.

PQ interval — The depolarisation wave reaches the atrioventric-
ular node, where it is slowed down, showing in the signal as a
short pause. The time between the P and the Q wave is needed
for the blood to flow from the atria into the ventricles. After
the depolarisation has passed the AV node and reaches the His
bundle it shoots through the right and left bundle branches.

ORS complex — As soon as the depolarisation shoots through
bundle branches, the ventricle’s myocytes change their charges.
The ventricles contract and blood flows into the system.

ST segment — Directly after the QRS complex, the ventricles
start to repolarise. Within the ST segment the ventricular
repolarisation is almost not visible in the signal.

T wave — After the ST segment, the ventricular repolarisation
happens more intensively, causing the T wave. The whole
cycle will again be initiated, after a short pause. Note, that
atria have already repolarised, but the atrial repolarisation has
a low amplitude and is overridden by the QRS complex.

RR interval — The RR interval is measured between two suc-
cessive heartbeats and determines a pulse. The variation of
multiple RR intervals is known as heart rate variability (HRV).

Measuring ECG

ECG is measured with electrodes attached to the human body.
In particular, the amplitude is measured as voltage over time.
A simple ECG can be measured with pairs of electrodes, a
lead can be interpreted as a line between two electrodes. The
bipolar limb leads are measured as follows: Lead 1 is measured
between both arms, Lead 2 is measured between the right arm
and the left leg, Lead 3 is measured between the left arm and
the left leg. Unipolar leads are measured between both arms
and the left leg. However, electrodes and cables are combined
differently than in the bipolar setup. In medical setups up to 12
leads are used to record an ECG. These measurements include
the bipolar limb leads, unipolar (augmented) limb leads and
six chest leads. This way the ECG can view the cardiac cycle
from 12 different angles. This can help to diagnose serious
health conditions. In constrast, non-medical ECG sensors
mostly measure the ECG only with one pair of electrodes
horizontally between the body halves (Lead 1).

FIELD STUDY: ECG IN THE WILD

Here we describe our field study. We aim to answer questions
on two scenarios: 1) From lab to the wild: How well do ECG
biometrics work on data recorded in everyday life in general?
2) Usable setup: How well do ECG biometrics work in the
wild with a setup that respects basic usability considerations
for everyday applications?

Participants

We recruited 21 participants (9 female, 12 male) via university
newsletters and social media. One male participant dropped
out due to a serious health condition while the study was run-
ning (unrelated to study participation). Thus, 20 participants
(11 male, 9 female) completed the study. Their age ranged
from 18-34 years, with a median of 27 years.

Lab Session 1 Field Recordings Lab Session 2

Briefing Mental Stress Test
Start of ECG Tracking
ECG Tracking End of ECG Tracking
Questionnaires

Mental Stress Test Questionnaires

approx. 1h | 7 days | approx. 1h

Figure 3. Study procedure: Read left to right, lab sessions top to bottom.
As we focus on the analysis of ECG as a biometric in this paper, ECG
is bold in the figure. Mental stress tests were carried out to study the
influence of mental stress on the ECG, but are not part of this paper.

Self reports of height and weight were used to calculate the
body mass index (BMI) which ranged between 19.46 and
38.81 kg/m”. According to the BMI, two participants would be
considered as overweight and two as obese. No one reported a
diagnosed heart condition.

Participants provided basic information on their lifestyle: Two
reported to not do any sports, one to exercise twice a month,
while the remaining 17 exercised once a week or more (e.g.
going for a run for 30 minutes). Regarding the use of sub-
stances which might influence the cardiovascular system, six
participants reported to be regular smokers, 17 to occasionally
drink alcohol, and five to irregularly use medication.

People were compensated with a 30 EUR gift card or cash.

Apparatus

The ECG signal was recorded with a chest belt tracking device
(EcgMove3 & EcgMove4?). We had one EcgMove4 and eight
EcgMove3. Both models provided all relevant features for
our study and the manufacturer ensured that both versions use
the same ECG sensor electronics. ECG is recorded with a
resolution of 12 bit and a sample rate of 1024 Hz. A battery
charge lasted for about two days.

According to the manufacturer, the tracker must be worn with
a belt around the chest as shown in Figure 1. The belt should
fit tight to the body, in such a way that the embedded dry
electrodes are in contact with the skin. Body hair may be
suboptimal for wearing the tracker. No participant reported
that this was an issue.

Procedure

The study procedure is depicted in Figure 3: Each participant
attended two lab sessions, one at the start and one at the end
of the recording phase. One lab session took approximately
one hour and included a mental stress test which we do not
analyse in this paper. Inbetween the lab sessions, ECG was
recorded in the field. This way, we recorded six complete
days, and two fractions of a day (start and end day) for each
participant. We consider recordings in the lab as an ECG
baseline for biometrics, as the measures took place under
controlled conditions.

Participants were instructed to wear the ECG tracker when
awake. Exceptions were highly intensive sports and showering
2
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or taking a bath. Regarding the manufacturer, the sensors can
be worn when doing sports. However, we decided to instruct
participants not to do so since we judged it as uncomfortable
based on a pretest, also considering transpiration.

DATA PROCESSING

We collected about 36 GB of raw tracking data. From this data
we consider in particular the ECG, the charging state, and an
internal measure of the tracker that reflects the validity of the
ECG. We describe our preprocessing steps as follows.

Step 1: Converting Files

Initially, the data was extracted from the trackers with the man-
ufacturer’s tool SensorManager. The resulting files were then
converted into the European Data Format (EDF+)4, which
stores multichannel biological and physical signals. For exam-
ple, it is commonly used for ECG, EMG, or EEG data. This
format allowed us to seamlessly process the data with exist-
ing standard libraries and tools. Conversion to EDF+ almost
tripled the file size.

Step 2: Downsampling

To enable efficient data analysis, we downsampled the data
from 1024 Hz to 256 Hz using the tool EDFBrowser’, which
automatically anti-aliased the signals as well. A sample rate
of 256 Hz should be sufficient for ECG biometrics according
to the literature [31, 51, 60, 64]. The effects of downsampling
are illustrated on an example heartbeat in Figure 4 (left).

Step 3: Removing Charging States and Invalid Measures

The single recordings were still too large to process on our
machine with 16 GB RAM. Therefore, we split the complete
recordings into smaller chunks.

We also removed parts of each day where the device was either
charging or did not detect a valid heart rate according to its
internal validity check. At these points the files were split into
smaller files to store clean episodes directly.

Step 4: Filtering

Technically, filtering and segmentation (see next step) were
carried out in one go. For readability we report them sepa-
rately here. Both were executed using the neurokit library for
Python®, which combines several libraries such as biospy’ for
processing physiological signals like EEG or ECG.

Visual inspection of the ECG showed noisy episodes in the
recordings. For example, we found high frequency interfer-
ences on some parts of the signals and minimal baseline drift.
We thus applied a finite impulse response (FIR) bandpass-filter,
configured with 77 taps and cutoff frequencies of 3 and 45Hz.
Only parts of the signals within that range pass the filter. For
example, any high frequency larger than 45Hz will be elimi-
nated. An example displaying the effects of the filter can be
seen in Figure 4 (right).

3SensorMa.nager: https://www.movisens.com/en/sensormanager
4EDF+: https://www.edfplus.info

SEDFbrowser: https://www.teuniz.net/edfbrowser/
5NeuroKit: https://neurokit.readthedocs.io

7BioSPPy: https://biosppy.readthedocs.io

Downsampling Filtering

Figure 4. Signal preprocessing. Left: An example of downsampled data.
The top signal has 1024 Hz, the bottom one 256 Hz. Right: Examples
before and after the filtering. The top plot shows an unfiltered signal
with visible interferences. The plot below shows the filtered signal.

Step 5: Segmentation (Peak Detection)

To segment the recordings into single cardiac cycles, we ap-
plied R peak detection as proposed by Engelse and Zeelen-
berg [20], with modifications by Lourceno et al. [42]. Cardiac
cycles and the other peaks — such as P, Q, S, and T — were then
extracted based on the R peaks. In particular, neurokit uses
fixed thresholds to determine cardiac cycles and to search for
maxima within the cycle to detect the other peaks.

Step 6: Outlier Dectection & Removal

The detected cycles and peaks were checked for outliers. For
this we first computed intervals between the peaks: PQ, QR,
RS, QS, and ST. A cardiac cycle was considered an outlier
when either 1) not all intervals could be calculated due to the
lack of the correct detection of peaks, or 2) an interval was
further than three standard deviations away from the mean
interval (specific to each type of interval). The files were split
at points where an outlier was found to store clean episodes.

Step 7: Feature Computation

Checking random samples of the previously determined inter-
vals showed high deviations for the PQ and the ST intervals.
Additionally, visual inspection of the detected peaks showed
that the algorithms had problems with correctly identifying
the P and T peaks. Specifically, this happened when the ampli-
tudes of the waves were rather low and could not be differen-
tiated from surrounding noise. For example, see the bottom
right signal in Figure 4.

Due to these difficulties with the PQ and ST intervals we fo-
cused on the QRS complex and derived statistical measures
based on three subsequent samples (heartbeats): min, max,
mean, median, standard deviations. Those measures were
computed for the QR, RS, and QS intervals. Intervals were
computed peak to peak. Selecting the best features for identifi-
cation was part of the evaluation, see section Feature Selection.

Step 8: Composing a Dataset for Evaluation

The number of recorded datapoints varied between partici-
pants. Thus, we subsampled the data per participant to create
a dataset with a roughly comparable number of samples for
each person. This helps with our evaluation schemes later on
and facilitates comparisons with related work and dataset sizes
reported therein. We ensured to evenly include data from each
person and day.
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In this way, we sampled a total of 50,000 datapoints per par-
ticipant across the entire period of the study.

EVALUATION SETUP
We next describe our evaluation goals and procedures. We
consider two questions and corresponding scenarios:

Scenario 1 — from lab to the wild: How well do ECG bio-
metrics work on data recorded in everyday life in general?
With this scenario we test if ECG biometrics generally work
on everyday life data, recorded outside of the controlled lab
setups of previous work. Here we train the system on data
from all days of the study, which means that the system has
also seen data from the same days as it is then tested on. While
somewhat unrealistic, this facilitates fundamental comparisons
to related work which recorded data in a single sitting.

Scenario 2 — usable setup: How well do ECG biometrics work
in the wild with a setup that respects basic usability consid-
erations for everyday applications? Post-hoc data analysis
sometimes tends to miss out on the implications that some
evaluation schemes have for practical deployments, as high-
lighted in related work [6]. In particular, for ECG biometrics
users would need to provide some training data initially (en-
rollment phase). With this second scenario we thus evaluate
user authentication in a more realistic approach with regard
to such implied enrollment needs for users: We assume that
enrollment takes place on one/two/three starting day(s) only
and the system then has to still work on the following days. In
practice, this would minimise time and user effort required for
training the system.

Basic Cross-Validation Procedure

In general, following typical biometrics evaluations, we test
if a system can distinguish between different people based
on the recorded ECG data. Intuitively, we train classifiers to
distinguish between one legitimate user and everyone else, and
then test this system with data from that legitimate user and a
person that the classifier has not seen before (“attacker’).

This evaluation scheme is depicted in Figure 5. Formally,
for each tuple of two participants (p,qg) we assign p as the
legitimate user and g as the attacker. All other participants
r € P\ {p,q} mimic the “rest of world”, for example all other
users within an enrollment database. We train a classifier ¢, to
separate two classes: The legitimate user p, which is labeled
as 1, and all other users r, which are labeled as 0. We then
test this classifier by feeding it 1) the test part of p’s data,
which it should ideally accept (output 1), and 2) the attacker
data (g’s data), which it should ideally reject (output 0). This
scheme follows the recommendation in related work [7], which
showed that excluding the attacker from the rest-of-world
group is important to avoid unrealistic and biased results.

Training & Test Sets

We generated training and test sets for each person-attacker
combination as described above. In both scenarios, attacker
data was spared out from training. The particular choice of
data points differed between the two scenarios.

For all p,q in P:

p: user r: “rest of the world”

train: 1
1 J 0
test: 1 3 1

Figure 5. The evaluation scheme used to evaluate classifiers for user
authentication on our ECG data, following the recommended procedure
in related work [7]. See text for details.

g:attacker

Scenario 1

Here we chose a random subsampling approach, where the
order of days or cardiac cycles does not need to be considered.
For each user-attacker combination we picked a fixed number
of datapoints at random from the legitimate user’s samples,
and split those into training and test sets. For the rest of the
world, we did the same but ensured that data is evenly picked
from data for each day and participant. Finally, we picked a
random sample of data from the attacker for testing.

For each user-attacker combination this resulted in 4,000 sam-
ples for both user and rest-of-world. Test data had 1,000
samples for both user and attacker. This gives 8,000 samples
for training and 2,000 samples for testing, reflecting a typical
80 / 20 train-test split. The total training data is equivalent to
24,000 cardiac cycles, while the testing data corresponds to
6,000 cycles. If we consider an average heart rate of 60 bpm,
this results in evaluations using 6.66 hours of training data and
1.66 hours of test data per user-attacker combination.

Scenario 2

For scenario 2 we defined a more realistic use case where
enrollment is assumed to happen on a starting day and the
system is validated against data of the following days. Thus,
keeping the order of days and cardiac cycles is crucial. For
each user-attacker combination, training data for the user was
taken from day two, as this was the first day where recordings
happened across the whole day (see Figure 3). Training data
for the “rest of the world” was evenly sampled from all days.
The user’s test data was sampled beginning with day three,
whereas the attacker’s test data was evenly taken from all days.
While we kept the sample order, note that samples might be
joined across temporal gaps in the recordings (e.g. gaps due
to taking off the tracker for doing sports; also see step 8 in the
Data Processing Section).

ER)

In the following we are going to call this scenario “scenario 2a
(considering enrollment data from only one day). For closer
investigation of the effect of the number of days used for
enrollment, we further adapted scenario 2a. We extended the
training data by a second and third day, that is, data from study
day three and day four. Accordingly, we removed day three,
respectively day four, from the test data. These adaptions
are called scenario 2b (two days for training) and scenario 2¢
(three days for training).



For each user-attacker combination this resulted in 2,000 sam-
ples for both user and rest-of-world, while test data had 500
samples for both user and attacker. This is less data than in
scenario 1 because some participants had less than 4,000 sam-
ples on day two. Scenario 2b and 2¢ were not affected by this
reduction. Since one participant’s data was too fragmented
and contained only few samples because of very noisy signals.
We decided to leave out this participant from evaluation for
both scenarios.

In scenario 2a the data is equivalent to 16,000 cardiac cycles
for training, and 3,000 cycles for testing. Again considering
an average pulse of 60bpm this results in evaluations using
4.44 hours of training data and 0.83 hours of test data per
user-attacker combination. For scenario 2b and 2¢c amount of
data was equal to scenario 1.

Feature Selection

We identified the best features to use by computing a correla-
tion matrix. Additionally, we computed feature importances
with the help of an Extra Tree Classifier with 100 estimators.
This way we identified the min, max, and mean of the QR, RS,
and QS intervals as the most promising features.

Performance Measures

We evaluated three classifiers: A Random Forest Classifier
(RFC), a Support Vector Machine (SVM), and a Neural Net
(NN). We used implementations from the Python libraries
scikit-learn® v0.20.2 and tensorflow® v1.12.0.

In the following, we report the equal error rate (EER), and
use the receiver operating characteristic (ROC) curve for vi-
sualisation. Both EER and the ROC curve are measures that
depend on the tradeoff between true positive rate (TPR) and
false positive rate (FPR). For both, the threshold applied to
the model’s output (i.e. class probability / score) is varied.
The ROC curve visualises this by plotting the resulting pairs
of TPR and FPR values. The EER describes the point where
TPR and FPR are equal. We decided for the EER and ROC
curve as they are commonly used in related work, provide a
one number summary, and visualise the overall accuracy of
classification with probabilities on a two-class problem. Thus,
they can be used to interpret the quality of a biomteric system.

Classifiers

We used the libraries’ default hyperparamter settings for the
classifiers, with some adaptions. These were informed by
cross-validation of a small set of values and NN architecture
variations, using a small randomly selected part of the data.
We utilised the sklearn library for the Random Forest Classifier
with 100 estimators, and a Support Vector Machine with linear
kernel, weighted classes, and C=10e-4. Tensorflow was used
for the Neural Net, which consisted of three dense layers with
32 units each and ReLu activation, one binary output layer
with sigmoid activation; Adam optimizer with a learning rate
of 10e-4; binary crossentropy loss.

For scenario 1, 100 training epochs turned out to be sufficient
to train the NN. We plotted the loss and accuracy for training

8scikit-learn: https://scikit-learn.org/stable/
9TensorFlow: https://www.tensorflow.org/

and validation. A visual inspection of the plots showed that
the curves started to stabilise after epoch 50. For scenario 2 we
found 25 training epochs to be sufficient. After that, training
and validation loss curves started to drift apart, which typically
indicates overfitting.

RESULTS

Basic Results

For scenario 1 we found an ROC AUC of 0.908 and an EER of
16.68%, based on the decisions of the RFC. The NN performed
almost comparable with an ROC AUC of 0.898, and an EER
of 17.70%. The SVM was worst with an ROC AUC of 0.805
and an EER of 25.70%. Results are summarised in Table 1
(see column scenario 1). For a visualisation of the ROC curves
in scenario 1 see Figure 6a.

For scenario 2a we found a ROC AUC of 0.843 and an EER of
21.91% for the decisions made by the RFC. The NN is inferior
to this with a ROC AUC of 0.800 and an EER of 26.17%.
Again, the SVM yields the worst performance with a ROC
AUC of 0.759 and an EER of 28.08%. A comparison can
be seen in Table 1 which summarises the results (see column
scenario 2a). The corresponding ROC curves for scenario 2a
are depicted in Figure 6b.

Comparison of Scenarios & Influence of Enroliment Days
Using one day for enrollment in scenario 2a shows worse
performance than scenario 1. For example, comparing the
RFC between the scenarios we found an absolute difference
of 0.065 for ROC AUC and 5.23% for ERR, see Figure 6c¢.
Using three days for enrollment in scenario 2¢ we found an
ROC AUC of 0.877 and an EER of 19.54%. The difference
between scenario 1 and scenario 2¢ then was 0.031 for ROC
AUC and 2.86% for EER. This improvement might be due to
variance in heartbeats and everyday contexts which can not be
captured within a single day.

Combining Multiple Decisions

The previous results were obtained on classification of single
datapoints, that is, feature vectors derived from three subse-
quent heartbeats. We also evaluated making decisions based
on a combination of subsequent multiple such datapoints. In
line with related work [11], we combined up to five subse-
quent decisions. This is equal to 15 heartbeats, or 15 seconds,
assuming a normal heartrate of 60bpm. Using decisions by
the RFC in scenario 1, we found this to improve absolute ROC
AUC by 5.6% and absolute EER by 7.53%, as seen in in Ta-
ble 2 and Figure 6d. Applying the same approach for scenario
2a, we found an improvement in absolute ROC AUC of 5.5%
and absolute EER of 5.29%. Decisions using three heartbeats
in scenario 1 perform nearly as well as decisions using 15
heartbeats in scenario 2a, which can be seen in Table 2 as well.

Subjective Feedback

We asked participants for subjective feedback at the end of
the study. This included two five-point Likert questions con-
sidering ECG biometrics. In particular, we asked people to
rate their agreement to the comfort of wearing the chest belt
and how much they would like to wear an ECG tracker for
biometric purpose. Figure 7 shows the results.
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Classifiers Scenario 1 Scenario 2a Scenario 2b Scenario 2¢
ROC AUC EER (%) ROCAUC EER (%) ROCAUC EER (%) ROCAUC EER (%)
RFC 0.908 16.68 0.843 2191 0.859 20.80 0.877 19.54
NN 0.898 17.70 0.800 26.17 0.859 21.02 0.876 20.16
SVM 0.805 25.70 0.759 28.08 0.771 28.10 0.784 26.77

Table 1. Summary of the classification results found in our scenarios. With scenario 1 we investigated if ECG biometrics generally work in the field.
Training and test data was taken from all days. In contrast, in scenario 2a training data was taken from the first complete day, test data from the
remaining days. This reflects a more realistic use case where enrollment happens on one day and authentication on subsequent days. Scenarios 2b and
2c are variations of scenario 2a: Here we varied the amount of training and test days. For scenario 2b we used data from two days for enrollment, for
2c we used data from three days for enrollment.
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Figure 6. Receiver operating characteristic (ROC) curves, visualising a) Comparison of classifiers in scenario 1; b) Comparisons of classifiers in scenario

2a; ¢) Comparison between scenario 1 & scenario 2a for the random forest classifier; d) Comparison of decisions made by the random forest classifier
on 3 and 15 heartbeats in scenario 1. Values for the ROC area under curve (AUC) and the equal error rate (EER) for a), b), and c) can be seen in Table 1.
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Values for d) can be seen in Table 2.

Scenario 1 (RFC) Scenario 2a (RFC)

Heartbeals  p-AUC  EER (%) ROC AUC  EER (%)
3 0.908 16.68 0.843 21.91
6 0.939 1276 0.874 18.76
9 0.952 10.98 0.886 17.96
12 0.959 9.83 0.894 16.96
15 0.964 9.15 0.898 16.62
Diff. 0.056 753 0.055 5.9

Table 2. Results of combined decisions made on subsequent heartbeats
by the random forest classifier (RFC) in scenario 1. In total the EER de-
creased by 7.53% in scenario 1 (i.e. from 3 to 15 heartbeats). In scenario
2a the EER decreased in total by 5.29%.

The comfort of the chest belt was rated as neutral by more than
half (55%) of the participants; 20% found it uncomfortable,
15% comfortable and 10% very comfortable. No one rated it
very uncomfortable.

The desire to wear an ECG tracker for biometric applications
was rather small: 40% rated it very unlikely, 20% unlikely,
20% neutral, 15% likely, and 5% very likely.

DISCUSSION

We discuss our findings with regard to related work, implica-
tions for future research and real world applications, as well
as critical reflections on privacy in this context.

Distinguishing People based on Real World ECG Data

Our results show that it is generally possible to distinguish
people by their heartbeats recorded with a non-medical ECG
tracker in everyday life. In particular, we found a best EER of
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agree
neutral

Il disagree

I strongly disagree

Q1

@ _
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Figure 7. Results of the subjective feedback regarding ECG biometrics
in everyday life. Q1: It is comfortable to wear the chest belt tracking
device. Q2: I would like to wear an ECG tracker for biometric purposes.

9.15% when authenticating users based on 15 heartbeats and
including training data from each day (scenario 1).

For three heartbeats, we found a higher EER of 16.68%. This
is higher than typical numbers in related work. We explain
this with the challenges of varying contexts and higher noise
of real world recordings, compared to controlled lab settings.
Thus, we conclude that future research should evaluate ECG
biometrics systems in their intended application contexts, not
only in lab settings, to avoid overly optimistic results.

Regarding uniqueness of the ECG, we found no significant
difference in EER with altering group sizes (5, 10, 15), which
was also shown by Carreiras et al. [9]. Moreover, a first com-
parison in our data showed 5.85% of pairs of participants to
be hard to be distinguished from each other. The threshold for
this was the mean EER of all pairs plus two times the standard
deviation. For those “difficult pairs” we could suspect some
similarities in physiology and lifestyle yet investigating this
would require more data (e.g. magnetic resonance imaging,



experience sampling). We thus suggest to further explore
uniqueness of ECG in the future, also with larger samples.

Comparison to Related Studies

In the following, we discuss our results in the light of key
related work. Note that direct comparisons of one-number
summaries such as EERs are difficult due to study differences.
Thus, we do not interpret exact values but rather discuss the
wider picture.

A number of papers report lower EERs in lab studies: For
example, work by Choi et al. [11] found an EER of 4.46%.
They recorded 60 seconds of ECG data per participant in
the lab, in a seated position. They trained their classifiers
on the first 30 seconds, while the rest was used for testing.
In practical biometric security applications, enrollment and
authentication are not likely to happen within a single minute.
Together with the more controlled setup, this likely explains
the better performance compared to our results on everyday
recordings.

Fitting this picture, Odinaka et al. [46] found EERs below 7%
when training and testing on data from a single session, yet
much higher EERs (below 20%) when training and testing
across sessions with gaps of up to 6 months. In these sessions,
data was recorded for five minutes in a seated position. Our
study thus likely captured more challenging real life variability
with regard to body postures and other contexts.

ECG biometrics on more long-term recordings are evaluated
by Labati et al. [17]: They relied on data from a public
database with 24h recordings to train a deep CNN which
achieved an EER of 5.81%. In contrast to our study, the dataset
was recorded with a medical-grade device and improved with
manually reviewed QRS/beat detection. Moreover, the authors
reported to have discarded noisy recordings. Thus, our data
likely contains higher noise and reflects practical applications
without manual data review and using wearable non-medical
sensors. While optimising a specific classifier was not at the
focus of our work here, in future work we plan to apply and
evaluate deeper models on our data as well, such as the one in
this related work.

In conclusion, we see our results as a first indication of what
to expect from ECG biometrics on data matching practical
applications, that is, using non-medical wearable sensors in
daily life. In particular, authentication performances obtained
on lab or “cleaned” data might often have to be considered
optimistic. Hence, we call for future interdisciplinary research
to combine machine learning and HCI perspectives, to con-
duct further studies beyond the lab and move closer towards
usable and reliable real-life applications. Examples include
access control in special working areas with a high demand
for security (e.g. laboratories, data centers, or power plants).

Training ECG Biometrics Systems on Real World Data
Comparing the different evaluation scenarios revealed that
for training the classification system on real world data it is
important to capture ECG over several days.

We attribute this to the variance of heartbeats which might
vary between days or even shorter timeframes. This is in line

with existing work [40, 46, 51]. In addition, in the wild we
expect extra noise due to varying real life contexts, such as
activities, body postures and movements, and so on. These
factors likely also contribute to the need of more training data
from multiple days (i.e. from more diverse contexts).

To quantify this, training on two days instead of one decreased
EER relative by 1.11%; training on three days by 2.37%.
Thus, we recommend that real world systems should take
into account new training data on a regular basis.

Practical Use of ECG Among Other Biometrics

Compared to other biometrics, for example fingerprint, ECG
is less accurate [13]. For a real world system we thus see ECG
as an additional factor in a multi-modal setup. This has already
been shown as promising in combination with fingerprint [13]
and face recognition [31].

Moreover, ECG is often attributed to provide information
about liveness of a person [21, 25, 30, 58, 64, 67]. However,
we do not share the view that ECG inherently provides se-
cure liveness detection, since related work has demonstrated
a successful attack [19]: Using a waveform generator, the
authors tricked an ECG sensor and biometrics system into
authenticating despite not being attached to a living human.
However, a multi-modal system could benefit from ECG as a
measure for continuous authentication, since it can be sensed
continuously and not only at certain points in time, such as
fingerprints. In this regard, we consider a combination of a
multitude of biometric factors as more akin to human liveness
detection (e.g. combining fingerprint, ECG, face recognition,
and behavioural biometrics). Investigating how to realise such
combinations in applications in a usable way presents plenty
of opportunities for future research.

Implications for Everyday ECG Trackers

As we worked with ECG field recordings, our data was rather
noisy. The noise might be caused by electrical interference,
as well as body motions, loosely fitted chest straps, or dry
or oily skin. Direct contact of the electrodes to the skin is
crucial. We used non-medical grade tracking devices with dry
electrodes, which might have influenced the signal quality as
well. In contrast, a medical grade devices works with adhesive
electrodes, multiple leads, and might have better electronics
built in. At the time of our study, we consider the tracking
devices and chest straps as state of the art in non-medical
ECQG tracking. Nevertheless, based on our study experiences
and results we see opportunities to improve aspects of such
wearable trackers: For example, a chest strap could embed an
array of electrodes. The tracking device could then consider
all these measures, or decide for the pair of electrodes with the
best signal quality. In the latter case, the tracker would also
need to evaluate signal quality. This could be done with an
integrated quality model based on machine learning, in line
with work by Yin et al. [65], who introduced an embedded
ECG biometrics architecture with a quality check.

Signal Characteristics & Challenges in Everyday ECG
While applying our digital signal processing, we found it es-
pecially challenging to detect the P and T waves of a cardiac



cycle. Their amplitudes were difficult to separate from sur-
rounding noise. Therefore, we decided to rely solely on the
QRS complex for identification, as those peaks appeared as
most stable. Based on our data, we thus see the need for fu-
ture work towards real world systems to focus on improved
fiducial extraction. Incorporating all prominent characteristics
of a cardiac cycle, such as the P wave, T wave, in addition to
the QRS complex, might improve overall performance since
more features could be computed. This might provide a more
complete picture about a person’s heart activity.

Alternatively, frequency domain features could be used [13,
68]. Work related to research on heart rate variability already
noted that spectral analysis of low frequency features can re-
quire relatively long recordings to output features of sufficient
quality [43]. This might be contrary to the need of a short
identification phase. However, frequency features could be
applied in a continuous authentication scenario.

Reflections on Privacy and Wider Implications

In general, we showed that distinguishing people via ECG
biometrics in everyday life is feasible. The sensing technology
used in our study is already available on the market. We
believe it is thus important for research on this topic to reflect
on wider implications, beyond the technical evaluations.

As a basic starting point for this reflection, consider that over
60% of our participants after the experience deemed it as (very)
unlikely that they would want to wear an ECG tracker for a
biometric security application. This could mean that people
would not like to buy and wear a device merely for ECG
biometrics, which would motivate integration of ECG trackers
into widespread devices such as smartphones or watches. This
was already done in case of the Apple Watch 4 but with the
main goal of health monitoring, not security. Alternatively,
our participants’ responses could reflect a general aversion
against biometric applications.

For biometrics, we see a main potential concern in what might
happen with the raw data and where it is stored. For instance,
in commercial contexts, employers might store ECG data
for identifying authorised personnel, but this data implicitly
also contains information on people’s health and lifestyle.
Even in our study experience we saw a link of this kind: We
excluded one person because of health conditions which would
have likely affected the ECG data. More generally, research
revealed that heart rate variability adapts to respiration [3, 43],
circadian rhythm [44], exposure to daytime noise [37], alcohol
consumption [63], and mental stress [36].

This should be considered in the light of enterprise authen-
tication based on ECG as a realistic use case. For example,
companies offer wristbands which can capture fingerprints
plus ECG for authentication'?. It remains unclear whether
such systems analyse data directly on the device, or if raw
data is stored and processed on remote servers. We see this
as a crucial difference from a privacy-sensitive perspective.
Another approach might be the computation of cryptographic
keys based on ECG [34].

1ONymi: https://nymi.com/

In past incidents, biometric databases have been the target of
attacks, for example leaking fingerprint data [27], plus facial
recognition data [61]. Affected users might not be able to use
their fingerprints for authentication anymore.

For ECG, it might be possible to recover, since it is less perma-
nent and changes over time [39] in contrast to fingerprints [14].
However, leaked ECG data risks revealing peoples’ health
states and lifestyle choices. In conclusion, we see privacy as
one of the most important considerations when designing such
biometric systems with physiological sensors.

CONCLUSION

So far, ECG biometrics studies have been carried out mostly
in the lab under controlled conditions and using medical-grade
sensors which might not adequately reflect the conditions of
practical real-world applications. Hence, existing work called
for field studies on ECG biometrics [55]. To address this gap,
we presented an in-depth study of ECG biometrics with a
wearable non-medical sensor in the wild.

Overall, we found that it is generally possible to distinguish
people via ECG data recorded in everyday life. Making de-
cisions on 15 heartbeats, and training on data across a week,
we found a best EER of 9.15%. This is overall comparable
to findings by lab studies. However, further analyses revealed
that more realistic evaluation assumptions from an HCI and
user perspective are much more challenging, for example ex-
pecting a system to only ask for user enrollment efforts on the
first day of deployment. While we showed that results can be
improved by making decisions on more data and data from
multiple days, our study thus indicates that future research
should aim to evaluate ECG biometrics systems not (only) in
the lab but in the intended application contexts.

Our study also contributes to the bigger picture that more
and more biometric modalities are viable to be measured in
daily life. A broader implication worth highlighting is that it
becomes increasingly important not to adopt a simplified view
on “biometrics” as a single concept. For instance, as shown
with the examples in our privacy discussion, the challenges
and risks implied by using fingerprints vs ECG biometrics
are considerably different. Working with everyday data, such
as in our study here, thus highlights the need for responsible
application design for real world biometrics applications.
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